PK/PD Efficacy Modelling of Combinations to Guide Scheduling and Sequencing

Sonya Tate, PhD

© 2016 Eli Lilly and Company

Outline of the Presentation

- Introduction
 - Why are combination treatments so important in oncology?
 - How do we choose which drugs should be combined?
 - How do we evaluate and optimise dose/schedule combination?
- Application of semi-mechanistic PK/PD modelling (Tate et al 2016)
 - Combination of abemaciclib and vemurafenib to combat drug-induced resistance to BRAF inhibition in BRAF-mutated melanoma
- Conclusions/thoughts
 - What are the pros/cons of semi-mechanistic combination PK/PD models?
 - How routinely are such models developed/implemented in drug development?
 - Is it possible to test drug combinations in PK/PD models a priori?

Combinations in Oncology

- Combination treatments are commonly used in oncology
- Broadly two types:
 - Combination with standard of care, often for ethical reasons
 - Combination with anticipated superior effects over monotherapy
- Combinations may be identified through:
 - Current clinical practice (for SOC combos)
 - In vitro screening methods
 - Biological hypotheses
- Combination treatments may help to:
 - Increase the impact of pathway disruption through upstream and downstream targets
 - Prevent cell from recovery by targeting two survival pathways
 - Combat emerging resistance to treatment by anticipating biological changes in the cell

Dose Scheduling and Sequencing

- Combination treatments are often tested using simultaneous administration
 - Unless limited by toxicity (and/or DDI), doses and dosing frequencies often mimic those of the monotherapies
- However, is the treatment benefit optimised using simultaneous administration?
 - Could delaying one treatment by hours / days maximise efficacy?
- Is the same amount of drug required for efficacy?
 - i.e. does the exposure-response curve for each drug change when in combination?
- Treatment optimisation of multiple dosing scenarios in combinations would require many in vitro / in vivo studies
- PK/PD modelling can be used to compile the known quantitative pharmacology of the effects of monotherapy and combination treatment
 - Using model simulations, a variety of dosing scenarios can be evaluated
 - Allows the dose schedule and sequencing to be optimised without the extensive resources required for in vivo or clinical evaluations

Application of Semi-Mechanistic PK/PD Modelling for Combinations in Oncology

Tate et al., 2016. BJC [accepted]

NCOLOGY

Abemaciclib Mechanism of Action

- Abemaciclib is a potent and selective inhibitor of cyclin-dependent kinases 4 and 6 (CDK4/6) currently in clinical development
 - Abemaciclib-mediated inhibition of CDK4/6 induces cell cycle arrest
 - CDK4/6 inhibition is directly measured by activity of pRb

- Phosphorylated retinoblastoma protein (pRb)
 - Direct measure of CDK4/6 inhibition
 - Cell density in late G1 phase
- Topoisomerase II a (Topolla)
 - Cell density in S phase
- Phosphohistone H3 (pHH3)
 - Cell density in G2/M phase

Vemurafenib Mechanism of Action

- Vemurafenib is a BRAF inhibitor approved for first-line treatment of BRAFmutated metastatic (or unresectable) melanoma
 - Vemurafenib interrupts the BRAF/MEK step in the MAPK pathway
 - Vemurafenib is efficacious in patients whose melanoma has become dependent on hyperactive BRAF for survival

 Phosphorylated MEK (pMEK) and ERK (pERK) are direct markers of vemurafenib-mediated inhibition of BRAF

Resistance to Vemurafenib

- While vemurafenib is highly effective in the target population, resistance to treatment occurs readily and rapidly
- Treatment of vemurafenib-resistant melanoma represents an area of unmet medical need

Wagle et al., J Clin Oncol, 2011

Resistance to Vemurafenib: Biological Basis

- Resistant xenograft tumours over-express pERK¹
 - Resistant baseline levels of pERK are elevated
 - Vemurafenib-mediated inhibition still occurs
 - pERK levels remain above baseline at maximum inhibition
- In house investigations revealed²:
 - Resistance is associated with MAPK pathway reactivation and cyclin D1 upregulation
 - Inhibition of CDK4/6 (by abemaciclib) overcomes resistance and induces apoptosis
 - Cells appear to become dependent on Rb for survival; inhibition of Rb by abemaciclib is thought to mediate apoptosis

¹Thakur et al., Nature, 2014; ²Vipin et al., Mol Cancer Ther, 2013

Tubulin

Available Pre-Clinical Data

Drug(s)	Design	Data
Abemaciclib	45 and 90 mg/kg QDx1 1,6,24,36,48 h	PK, biomarkers (pRb, Topollα, pHH3, Total Rb)
Vemurafenib	15 mg/kg QDx1 1,2,6,12,24,48 h	PK, (pMEK, pERK, CyclinD1, pRb, Topollα, pHH3, Total Rb)
	7.5, 30 and 60 mg/kg QDx1 4,8,24 h	
Vemurafenib, abemaciclib	Control, Vemurafenib 15 mg/kg BIDx76, Vemurafenib 15 mg/kg BIDx48 then abemaciclib 90 mg/kg QDx28	Tumour growth

Abemaciclib and Vemurafenib PK Models

Vemurafenib

- Single dose study (7.5 60 mg/kg)
- One compartment model with non-linear absorption and linear clearance

Abemaciclib

- Simulation of previously developed mouse PK model¹
- Additional PK study confirmed lack of DDI

¹Tate et al., Clin Cancer Res, 2014.

Abemaciclib Biomarker Model

- Previously established model¹; adapted to include autoregulation of total Rb²
- Parameterisation based on cell cycle distribution allows recalibration to cell line of interest: A375
- Simulations confirmed accurate model prediction of response to abemaciclib in A375 xenograft tumours

¹Tate et al., Clin Cancer Res, 2014; ²Shan et al., Mol Cell Biol, 1994

Vemurafenib Biomarker Model

150

- Model combines elements of MAPK pathway and • cell cycle markers
- Cell cycle model structure echoes previously • established model for abemaciclib

Efficacy Mediated by Vemurafenib

[Vem]

- The anti-tumour effects of vemurafenib are mediated by...
- ... Tumour shrinkage caused by inhibition of pERK...
- ...And tumour growth inhibition as a result of cell cycle arrest (pHH3), as demonstrated previously for abemaciclib

Accruing Resistance to Vemurafenib

Overcoming Resistance by Abemaciclib

Abemaciclib/Vemurafenib PK/PD Model

Dosing groups:

- Vehicle
- Vemurafenib 15 mg/kg BIDx76
- Sequential vemurafenib 15 mg/kg BIDx48, <u>then</u> abemaciclib 90 mg/kg QDx28

Model accurately describes:

- Uncontrolled tumour growth
- Tumour shrinkage in the presence of vemurafenib
- Developing **resistance** to vemurafenib
- **Rescue** by abemaciclib

PK/PD Model: Validation

Dosing groups:

- Vehicle
- Vemurafenib 10 mg/kg BIDx21
- Abemaciclib 45 mg/kg QDx21
- Simultaneous vemurafenib 10 mg/kg BIDx21 <u>and</u> abemaciclib 45 mg/kg QDx21

Model accurately describes:

- Uncontrolled tumour growth (fitted)
- Efficacy of abemaciclib and vemurafenib alone and in combination (simulated)
 - Note: short duration of therapy cells not yet resistant
- Provides an external validation of the combination PK/PD model

Simulations of Dosing Scenarios

 Vemurafenib treatment is initially efficacious, but resistance soon occurs and tumours regrow

Simulations of Dosing Scenarios

• Simultaneous treatment of abemaciclib with vemurafenib (both dosed continuously) offers additional benefit over vemurafenib alone

Simulations of Dosing Scenarios

 Intermittent treatment with vemurafenib delays onset of resistance, thereby extending time to progression¹

Simulations of Alternative Dosing Scenarios

• Simultaneous treatment of abemaciclib (continuous) with vemurafenib (intermittent) offers the most efficacious dosing schedule

Conclusions

- An abemaciclib/vemurafenib pre-clinical PK/PD model was established, describing:
 - Vemurafenib-mediated pERK inhibition, leading to apoptosis
 - Upregulation of the MAPK pathway, resulting in resistance to vemurafenib
 - Increased sensitivity to abemaciclib-mediated inhibition of total Rb when cyclin D1 is upregulated, resulting in apoptosis in the resistant cell
- The model was simulated in various ways to achieve:
 - External validation, by simulating mono- and combo-therapy arms and comparing to observed data
 - Further evidence of the benefit of intermittent vemurafenib dosing to delay onset of resistance
 - Support for combining continuous abemaciclib with intermittent vemurafenib to achieve excellent response in A375 melanoma xenograft tumours
- Future directions
 - The modelling efforts demonstrated the utility of semi-mechanistic PK/PD models in exploring combination therapies
 - Work is ongoing to identify projects which may significantly benefit from such analyses

Final Thoughts

- The benefits of developing semi-mechanistic PK/PD models to evaluate drug combinations are:
 - Simulate hundreds of dosing scenarios, thereby minimising resource requirements and animal usage
 - Formalise quantitative pharmacology for hypothesis testing
- However, time and experienced personnel are required for model development
- Such models are not routinely developed or implemented in drug development
 - Often rely on in vitro / in vivo screens
 - Often constrained by time available on fast-moving clinical development programs
- Using complex systems pharmacology / biology models, it may be possible to test drug combinations in PK/PD models a priori, removing the need for all but confirmatory in vitro / in vivo studies
 - Further investment and development is required to achieve a priori identification of beneficial combination treatments

Acknowledgements

Biology

- Teresa Burke
- Shufen Cai
- Vipin Yadav
- Lawrence Gelbert
- Sheng-Bin Peng
- <u>Richard Beckmann</u>

ADME

- Daisy Hartman
- Palaniappan Kulathaivel

PK/PD

- Damien Cronier
- Erl Wood PK/PD Group

